Remarks on Some Recent Papers Concerning the Computation of Coupled Coincidence Points

Manish Jain ${ }^{1}$, Neetu Gupta ${ }^{2}$ and Sanjay Kumar ${ }^{3}$
${ }^{1}$ Department of Mathematics Ahir College, Rewari 123401 India
${ }^{2}$ HAS Department, YMCAUST, Faridabad, India
${ }^{3}$ Department of Mathematics DCRUST, Murthal, Sonepat India
E-mail: ${ }^{1}$ mainsh_261283@rediffmail.com, ${ }^{2}$ neetuymca@yahoo.co.in, ${ }^{3}$ sanjuciet@rediffmail.com

Abstract

In this note we first point out an omission in the hypotheses of Theorem 3.1, and then complete the proof of Theorem 4.1 of [1]. Similarly, we point out some omissions in the hypotheses of Theorem 4, and then complete the proof of Theorem 6 of [2]. Finally, we note that the results in [2] are not new but are the immediate consequences of the results proved in [1] and [3].

Keywords: Coupled coincidence points; partially ordered metric spaces; mixed monotone property; compatible mappings.

2010 AMS Classification: Primary: 47H10; Secondary 54H25

1. INTRODUCTION

Theorem 3.1 of [1] (and Theorem 4 of [2]) establishes the existence of a coupled coincidence point within the framework of the partially ordered metric spaces. By adding additional hypotheses to Theorem 3.1 [1] (and Theorem 4 [2]), Theorem 4.1 of [1] (and Theorem 6 of [2], respectively) purports to show that the coupled coincidence point is unique. The reader should consult [1,2,3] for terms not specifically defined in this note.

Remark 1. The proof of Theorem 3.1 ([1], page 7, line 12) uses the fact that g is monotone increasing. The hypotheses of this theorem must also include this fact. The correct statement of Theorem 3.1 should now read as follows:
Theorem 1. Let (X, \preccurlyeq) be a partially ordered set and suppose there exists a metric d on X such that (X, d) is a complete metric space. Let $\mathrm{F}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be two mappings such that F has the mixed g-monotone property on X and there exist two elements $\mathrm{X}_{0}, \mathrm{y}_{0} \in \mathrm{X}$ with

$$
\mathrm{gx}_{0} \preccurlyeq \mathrm{~F}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \text { and } \mathrm{gy}_{0} \succcurlyeq \mathrm{~F}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right) .
$$

Suppose there exists $\phi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{array}{r}
\phi(\mathrm{d}(\mathrm{~F}(\mathrm{x}, \mathrm{y}), \mathrm{F}(\mathrm{u}, \mathrm{v}))) \leq \frac{1}{2} \phi(\mathrm{~d}(\mathrm{gx}, \mathrm{gu})+\mathrm{d}(\mathrm{gy}, \mathrm{gv})) \\
-\psi\left(\frac{\mathrm{d}(\mathrm{gx}, \mathrm{gu})+\mathrm{d}(\mathrm{gy}, \mathrm{gv})}{2}\right)
\end{array}
$$

for all $x, y, u, v \in X$ with $g x \succcurlyeq g u$ and $g y \preccurlyeq g v$. Suppose $F(X$ $\times X) \subseteq \mathrm{g}(\mathrm{X})$; the mapping g is continuous, monotone increasing and compatible with F and also suppose either
(a) F is continuous, or
(b) X has the following property:
(i) if a non-decreasing sequence $\left\{\mathrm{X}_{\mathrm{n}}\right\} \rightarrow \mathrm{x}$, then $\mathrm{X}_{\mathrm{n}} \preccurlyeq \mathrm{x}$, for all n;
(ii) if a non-increasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y \preccurlyeq y_{n}$ for all n.

Then there exist $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that

$$
g x=F(x, y) \quad \text { and } \quad g y=F(y, x)
$$

that is, F and g have a coupled coincidence point in X.
Remark 2. The proof of Theorem 4 ([2]) uses the fact that $\mathrm{gx}_{0} \preccurlyeq \mathrm{~F}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ and $\mathrm{gy} \mathrm{y}_{0} \succcurlyeq \mathrm{~F}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right)$ and that the mapping F must have the mixed g-monotone property. The hypotheses of this theorem must also include these facts. Further, we note that the completeness of the range subspace $g(X)$ relaxes the completeness of the space (X, d). The statement of Theorem 4 ([2]) should now read as follows:

Theorem 2. Let $(\mathrm{X}, \preccurlyeq)$ be a partially ordered set and suppose that there exists a metric d on X . Let $\mathrm{F}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and $\mathrm{g}: \mathrm{X}$ $\rightarrow X$ be two mappings such that F has the mixed g-monotone property on X and there exist two elements $\mathrm{X}_{0}, \mathrm{y}_{0} \in \mathrm{X}$ with

$$
g x_{0} \preccurlyeq F\left(x_{0}, y_{0}\right) \text { and } g y_{0} \succcurlyeq F\left(y_{0}, x_{0}\right) .
$$

Suppose there exists $\varphi \in \Phi$ and $\psi \in \Psi$ such that F and g satisfy

$$
\begin{aligned}
& \varphi(\mathrm{d}(\mathrm{~F}(\mathrm{x}, \mathrm{y}), \mathrm{F}(\mathrm{u}, \mathrm{v}))) \leq \frac{1}{2} \varphi(\mathrm{~d}(\mathrm{gx}, \mathrm{gu})+\mathrm{d}(\mathrm{gy}, \mathrm{gv})) \\
&-\psi\left(\frac{\mathrm{d}(\mathrm{gx}, \mathrm{gu})+\mathrm{d}(\mathrm{gy}, \mathrm{gv})}{2}\right),
\end{aligned}
$$

for all $x, y, u, v \in X$ with $g x \preccurlyeq g u$ and $g y \succcurlyeq g v$. Suppose $F(X$ $\times X) \subseteq g(X) g(X)$ is complete and the mapping g is continuous.
Suppose that either
(1) F is continuous, or
(2) X has the following property:
(a) if a non-decreasing sequence $\left\{X_{n}\right\} \rightarrow x$, then X_{n} $\preccurlyeq x$, for all $n \in \mathbb{N}$;
(b) if a non-increasing sequence $\left\{\mathrm{y}_{\mathrm{n}}\right\} \rightarrow \mathrm{y}$, then y $\preccurlyeq y_{n}$ for all $n \in \mathbb{N}$.

Then there exist $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that

$$
g x=F(x, y) \quad \text { and } \quad g y=F(y, x)
$$

that is, F and g have a coupled coincidence point in X.
Remark 3. We note that Theorem 2 (Theorem 4 [2]) is actually Theorem 2.11 of [3].
Remark 4. The proof of the Theorem 5 ([2], page 7, line 8) uses the fact that $\mathrm{gx} \succcurlyeq \mathrm{g} x_{n+1}$ and $\mathrm{gy} \leqslant \mathrm{g} y_{n+1}$. This is possible since $\left\{\mathrm{gx}_{\mathrm{n}}\right\} \rightarrow \mathrm{gx}$ and using condition (2) of the hypotheses of Theorem 5 [2]. Now, if we look at the proof of the Theorem 5 ([2], page 8 , line 7), the authors use the fact that $\left\{\mathrm{gx}_{\mathrm{n}}\right\} \rightarrow \mathrm{x}$. But this is not correct.
Remark 5. The conclusion of Theorem 4.1 (in [1]) is that F and g have a unique coupled coincidence point. However, the proof only shows that $\mathrm{gx}=\mathrm{gz}$ and $\mathrm{gy}=\mathrm{gt}$, where (x, y) and $(\mathrm{z}$, $t)$ are assumed to be coupled coincidence points of F. It is necessary to show that $x=z$ and $y=t$.

To complete the proof we shall first prove the following Lemma.

Lemma 1. Let $\mathrm{F}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be compatible maps and there exists an element $(x, y) \in X \times X$, such that $g x$ $=F(x, y)$ and $g y=F(y, x)$, then $g F(x, y)=F(g x, g y)$ and $g F(y$, $x)=F(g y, g x)$.

Proof. Since the pair (F, g) is compatible, it follows that
$\lim _{n \rightarrow \infty} d\left(g F\left(x_{n}, y_{n}\right), F\left(g\left(x_{n}\right), g\left(y_{n}\right)\right)\right)=0$,
$\lim _{n \rightarrow \infty} d\left(g F\left(y_{n}, x_{n}\right), F\left(g\left(y_{n}\right), g\left(x_{n}\right)\right)\right)=0$,
whenever $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in X, such that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{F}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{g}\left(\mathrm{x}_{\mathrm{n}}\right)=\mathrm{a}, \lim _{\mathrm{n} \rightarrow \infty} \mathrm{F}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)=$ $\lim _{n \rightarrow \infty} g\left(y_{n}\right)=b$ for some a, b in X.
Taking $\mathrm{x}_{\mathrm{n}}=\mathrm{x}, \mathrm{y}_{\mathrm{n}}=\mathrm{y}$ and using the fact that $\mathrm{gx}=\mathrm{F}(\mathrm{x}, \mathrm{y}), \mathrm{gy}=$ $F(y, x)$, it follows that
$\mathrm{d}(\mathrm{gF}(\mathrm{x}, \mathrm{y}), \mathrm{F}(\mathrm{gx}, \mathrm{gy}))=0$ and $\mathrm{d}(\mathrm{gF}(\mathrm{y}, \mathrm{x}), \mathrm{F}(\mathrm{gy}, \mathrm{gx}))=0$.
Hence, $g F(x, y)=F(g x, g y)$ and $g F(y, x)=F(g y, g x)$.

Now, we are ready to complete the proof of Theorem 4.1 [1].
Since (x, y) is a coupled coincidence point of F and g; that is, $g x=F(x, y), g y=F(y, x)$; and the pair (F, g) is compatible, by Lemma 1, it follows that

$$
\begin{align*}
& g g x=\operatorname{gF}(x, y)=F(g x, g y), \text { and } \\
& g g y=\operatorname{gF}(y, x)=F(g y, g x) \tag{1}
\end{align*}
$$

Denote $g x=r, g y=s$ then by (1), we have

$$
\begin{equation*}
\mathrm{gr}=\mathrm{F}(\mathrm{r}, \mathrm{~s}) \text { and } \mathrm{gs}=\mathrm{F}(\mathrm{~s}, \mathrm{r}) \tag{2}
\end{equation*}
$$

Thus, (r, s) is a coupled coincidence point of the mappings F and g . Then by (38) (in [1]) with $\mathrm{z}=\mathrm{r}, \mathrm{t}=\mathrm{s}$, it follows that

$$
\begin{equation*}
\mathrm{gr}=\mathrm{r}, \mathrm{gs}=\mathrm{s} . \tag{3}
\end{equation*}
$$

$B y(2)$ and (3), $r=g r=F(r, s)$ and $s=g s=F(s, r)$. Therefore, (r, s) is the coupled common fixed point of F and g . This proves the existence of coupled common fixed point of F and g. Also, if (p, q) is another coupled common fixed point of maps F and g , then by (38) (in [1]), we have $\mathrm{p}=\mathrm{gp}=\mathrm{gr}=\mathrm{r}$ and $\mathrm{q}=\mathrm{gq}=\mathrm{gs}=\mathrm{s}$.

Remark 6. The above addition to the proof of Theorem 4.1 [1] not only proves the uniqueness of coupled coincidence point of F and g but also ensures the existence and uniqueness of coupled common fixed point of F and g .

Remark 7. The conclusion of Theorem 6 (in [2]) is that F and g have a unique coupled fixed point. However, the proof only shows that $\mathrm{gx}=\mathrm{gz}$ and $\mathrm{gy}=\mathrm{gt}$, where (x, y) and (z, t) are assumed to be coupled coincidence points of F. It is necessary to show that $\mathrm{x}=\mathrm{z}$ and $\mathrm{y}=\mathrm{t}$. The proof presented above along with Lemma 1, is also applicable to Theorem 6 [2], if in the hypotheses of Theorem 6 [2], we additionally assume that the mappings F and g are compatible.

Remark 8. We finally conclude that Theorems 4, 6 of [2] follows immediately from Theorem 2.11 of [3] and Theorem 4.1 of [1], respectively.

REFERENCES

[1] Alotaibi, A., and Alsulami, S.M., "Coupled coincidence points for monotone operators in partially ordered metric spaces", Fixed Point Theory Appl. 2011, 2011:44.
[2] Turkoglu, D., and Sangurlu, M., "Coupled fixed point theorems for mixed g-monotone mappings in partially ordered metric spaces", Fixed Point Theory Appl. 2013, 2013:348.
[3] Hussain, N., Latif, A. and Shah, M.H., "Coupled and tripled coincidence point results without compatibility", Fixed Point Theory Appl. 2012, 2012:77.

